Renal aging mechanisms
PDF (Español (España))
XPS (Español (España))
JPG (Español (España))
سرور مجازی ایران Decentralized Exchange

How to Cite

1.
Montero Valverde D, Abarca Brenes I, Pacheco Muñoz M. Renal aging mechanisms. Rev.méd.sinerg. [Internet]. 2022May1 [cited 2024Nov.21];7(5):e804. Available from: https://revistamedicasinergia.com/index.php/rms/article/view/804

Abstract

The kidneys are one of the organs that undergoes the most changes during aging. There are a series of mechanisms involved in the renal senescence process that explain the structural, functional and molecular changes that occur intrinsically in this organ. One of the most studied is the Klotho gene, whose decrease favors harmful processes that lead to arteriosclerosis and the progression of permanent kidney damage. Other mechanisms detailed in this review include fibroblast growth factor 23, cellular senescence, telomere shortening, chronic inflammation, and Wnt signaling that is often overexpressed during aging. Understanding these mechanisms will favor the implementation of different interventions in the future to stop or slow down the fibrosis and sclerosis that develops in older adults with increasing age.

https://doi.org/10.31434/rms.v7i5.804

Keywords

aging mechanisms. oxidative stress. renal senescence. Klotho gene. chronic inflammation.
PDF (Español (España))
XPS (Español (España))
JPG (Español (España))

References

O’Sullivan ED, Hughes J, Ferenbach DA. Renal aging: Causes and consequences. J Am Soc Nephrol [Internet]. 2017;28(2):407–20. doi: http://dx.doi.org/10.1681/ASN.2015121308

Li Z, Wang Z. Aging kidney and aging-related disease. Adv Exp Med Biol [Internet]. 2018;1086:169–87. doi: http://dx.doi.org/10.1007/978-981-13-1117-8_11

Kuro-O M. The Klotho proteins in health and disease. Nat Rev Nephrol [Internet]. 2019;15(1):27–44. doi: http://dx.doi.org/10.1038/s41581-018-0078-3

Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, aging, and the failing kidney. Front Endocrinol (Lausanne) [Internet]. 2020;11. doi: http://dx.doi.org/10.3389/fendo.2020.00560

Drew DA, Katz R, Kritchevsky S, Ix JH, Shlipak MG, Newman AB, et al. Fibroblast growth factor 23: A biomarker of kidney function decline. Am J Nephrol [Internet]. 2018;47(4):242–50. doi: http://dx.doi.org/10.1159/000488361

Wei S-Y, Pan S-Y, Li B, Chen Y-M, Lin S-L. Rejuvenation: Turning back the clock of aging kidney. J Formos Med Assoc [Internet]. 2020;119(5):898–906. doi: http://dx.doi.org/10.1016/j.jfma.2019.05.020

Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int [Internet]. 2017;92(3):569–79. doi: http://dx.doi.org/10.1016/j.kint.2017.02.036

Valentijn FA, Falke LL, Nguyen TQ, Goldschmeding R. Cellular senescence in the aging and diseased kidney. J Cell Commun Signal [Internet]. 2018;12(1):69–82. doi: http://dx.doi.org/10.1007/s12079-017-0434-2

Gekle M. Kidney and aging — A narrative review. Exp Gerontol [Internet]. 2017;87:153–5. doi: http://dx.doi.org/10.1016/j.exger.2016.03.013

Kidir V, Aynali A, Altuntas A, Inal S, Aridogan B, Sezer MT. Telomerase activity in patients with stage 2–5D chronic kidney disease. Nefrologia [Internet]. 2017;37(6):592–7. doi: http://dx.doi.org/10.1016/j.nefro.2017.03.025

Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother [Internet]. 2017;94:317–25. doi: http://dx.doi.org/10.1016/j.biopha.2017.07.091

Choudhury D, Levi M. Kidney aging--inevitable or preventable? Nat Rev Nephrol [Internet]. 2011;7(12):706–17. doi: http://dx.doi.org/10.1038/nrneph.2011.104

Paz Ocaranza M, Riquelme JA, García L, Jalil JE, Chiong M, Santos RAS, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol [Internet]. 2020;17(2):116–29. doi: http://dx.doi.org/10.1038/s41569-019-0244-8

Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res [Internet]. 2017;125:21–38. doi: http://dx.doi.org/10.1016/j.phrs.2017.06.005

Yang T, Xu C. Physiology and pathophysiology of the intrarenal renin-angiotensin system: An update. J Am Soc Nephrol [Internet]. 2017;28(4):1040–9. doi: http://dx.doi.org/10.1681/ASN.2016070734

Wang Y, Zhou CJ, Liu Y. Wnt signaling in kidney development and disease. Prog Mol Biol Transl Sci [Internet]. 2018;153:181–207. doi: http://dx.doi.org/10.1016/bs.pmbts.2017.11.019

Zuo Y, Liu Y. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis: Wnt/β-catenin and kidney fibrosis. Nephrology (Carlton) [Internet]. 2018;23 Suppl 4:38–43. doi: http://dx.doi.org/10.1111/nep.13472

Li Z, Zhou L, Wang Y, Miao J, Hong X, Hou FF, et al. (pro)renin receptor is an amplifier of Wnt/β-catenin signaling in kidney injury and fibrosis. J Am Soc Nephrol [Internet]. 2017;28(8):2393–408. doi: http://dx.doi.org/10.1681/ASN.2016070811

Chen D, Xie R, Shu B, Landay AL, Wei C, Reiser J, et al. Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Ann N Y Acad Sci [Internet]. 2019;1442(1):48–60. doi: http://dx.doi.org/10.1111/nyas.13945

Miao J, Liu J, Niu J, Zhang Y, Shen W, Luo C, et al. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell [Internet]. 2019;18(5):e13004. doi: http://dx.doi.org/10.1111/acel.13004

Zhou G, Li J, Zeng T, Yang P, Li A. The regulation effect of WNT-RAS signaling in hypothalamic paraventricular nucleus on renal fibrosis. J Nephrol [Internet]. 2020;33(2):289–97. doi: http://dx.doi.org/10.1007/s40620-019-00637-8

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Array

Downloads

Download data is not yet available.
فروشگاه اینترنتی vpn for android خرید vpn سایت شرط بندی