Rol del óxido nítrico en la fisiopatología del ictus cerebral
PDF
HTML
سرور مجازی ایران Decentralized Exchange

Cómo citar

1.
Fernández Agudelo S, Zeledón Corrales N, Rojas Jara A. Rol del óxido nítrico en la fisiopatología del ictus cerebral. Rev.méd.sinerg. [Internet]. 1 de enero de 2020 [citado 22 de diciembre de 2024];5(1):e339. Disponible en: https://revistamedicasinergia.com/index.php/rms/article/view/339

Resumen

En el ictus cerebral ocurren múltiples procesos fisiopatológicos complejos que determinan el daño cerebral primario y secundario.  El óxido nítrico cumple un papel fundamental en la fisiopatología del ictus, representa es un componente primario en su desarrollo y progresión. Está íntimamente relacionado con la activación de la cascada inflamatoria, la alteración de la función mitocondrial, la angiogénesis y la neurogénesis. Estos últimos dos procesos son fundamentales para la neurorreparación posterior al ictus por lo cual han sido ampliamente estudiados. Las tres vías de producción del óxido nítrico se ven involucradas.  El óxido nítrico puede desempeñarse como un agente perjudicial o protector dependiendo de donde se produzca.

https://doi.org/10.31434/rms.v5i1.339

Palabras clave

óxido nítrico. ictus cerebral. estrés oxidativo. neurorreparación.
PDF
HTML

Citas

Liu R, Geng P, Ma M, Yu S, Wang X, Zhang W, Di H. Association between endothelial nitric oxide synthase gene polymorphism (T-786C) and ischemic stroke susceptibility: a meta-analysis. International Journal of Neuroscience. 2014 01 16;124(9):642-651. https://doi.org/10.3109/00207454.2013.873978

Wang Z, Chen G, Chen Z, Mou R, Feng D. The role of nitric oxide in stroke. Medical Gas Research. 2017;7(3):194. https://doi.org/10.4103/2045-9912.215750

Vijayan M, Reddy PH. Stroke, Vascular Dementia, and Alzheimer's Disease: Molecular Links. J Alzheimers Dis JAD. 06 de 2016;54(2):427-43. https://doi.org/10.3233/JAD-160527

Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nature Reviews Neuroscience. 2017 05 18;18(7):419-434. https://doi.org/10.1038/nrn.2017.48

Nash KM, Schiefer IT, Shah ZA. Development of a reactive oxygen species-sensitive nitric oxide synthase inhibitor for the treatment of ischemic stroke. Free Radic Biol Med. 01 de 2018;115:395-404. https://doi.org/10.1016/j.freeradbiomed.2017.12.027

Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. American Journal of Physiology-Heart and Circulatory Physiology. 2017 01 01;312(1):H1-H20. https://doi.org/10.1152/ajpheart.00581.2016

Yagami T, Koma H, Yamamoto Y. Pathophysiological Roles of Cyclooxygenases and Prostaglandins in the Central Nervous System. Mol Neurobiol. 2016;53(7):4754-71.

https://doi.org/10.1007/s12035-015-9355-3

Katusic ZS, Austin SA. Neurovascular Protective Function of Endothelial Nitric Oxide - Recent Advances. Circ J Off J Jpn Circ Soc. 24 de junio de 2016;80(7):1499-503.

https://doi.org/10.1253/circj.CJ-16-0423

Liu H, Li J, Zhao F, Wang H, Qu Y, Mu D. Nitric oxide synthase in hypoxic or ischemic brain injury. Reviews in the Neurosciences. 2015 01 01;26(1). https://doi.org/10.1515/revneuro-2014-0041

Wei LK, Au A, Menon S, Griffiths LR, Kooi CW, Irene L, Zhao J, Lee C, Alekseevna AM, Hassan MRA, Aziz ZA. Polymorphisms of MTHFR , eNOS , ACE , AGT , ApoE , PON1 , PDE4D , and Ischemic Stroke: Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases. 2017 Nov;26(11):2482-2493. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.048

Ji J, Xiang P, Li T, Lan L, Xu X, Lu G, Ji H, Zhang Y, Li Y. NOSH-NBP, a Novel Nitric Oxide and Hydrogen Sulfide- Releasing Hybrid, Attenuates Ischemic Stroke-Induced Neuroinflammatory Injury by Modulating Microglia Polarization. Frontiers in Cellular Neuroscience. 2017 05 26;11. https://doi.org/10.3389/fncel.2017.00154

Narne P, Pandey V, Phanithi PB. Role of Nitric Oxide and Hydrogen Sulfide in Ischemic Stroke and the Emergent Epigenetic Underpinnings. Molecular Neurobiology. 2018 06 20;56(3):1749-1769. https://doi.org/10.1007/s12035-018-1141-6

Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Frontiers in Neurology. 2017 09 07;8. https://doi.org/10.3389/fneur.2017.00467

Garry P, Ezra M, Rowland M, Westbrook J, Pattinson K. The role of the nitric oxide pathway in brain injury and its treatment — From bench to bedside. Experimental Neurology. 2015 01;263:235-243. https://doi.org/10.1016/j.expneurol.2014.10.017

Zhang RL, Zhang ZG, Chopp M. Targeting nitric oxide in the subacute restorative treatment of ischemic stroke. Expert Opinion on Investigational Drugs. 2013 04 18;22(7):843-851. https://doi.org/10.1517/13543784.2013.793672

Ginsberg MD. The cerebral collateral circulation: Relevance to pathophysiology and treatment of stroke. Neuropharmacology. 2018 05;134:280-292. https://doi.org/10.1016/j.neuropharm.2017.08.003

Li S, Wang Y, Jiang Z, Huai Y, Liao JK, Lynch KA, Zafonte R, Wood LJ, Wang QM. Impaired Cognitive Performance in Endothelial Nitric Oxide Synthase Knockout Mice After Ischemic Stroke. American Journal of Physical Medicine & Rehabilitation. 2018 07;97(7):492-499. https://doi.org/10.1097/phm.0000000000000904

Descargas

Los datos de descargas todavía no están disponibles.
فروشگاه اینترنتی vpn for android خرید vpn سایت شرط بندی